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Free-energy functionals suitable for describing realistic, nonuniform systems 
near criticality are discussed with emphasis on the advantages of a local for- 
malism. It is proposed to investigate microcanonical functionals in which both 
the usual order-parameter (or magnetization) density m(r) and the local energy 
density e(r), which has independent critical fluctuations, are employed. This 
approach is tested by an exact calculation of the microcanonical functional 
~[{m},  {e}] in the continuum limit for a one-dimensional Ising model. 
Remarkably, the microcanonical functional is found to be local irrespective of 
the proximity to the critical point (located at zero temperature and zero field). 
Furthermore, its form relates closely to the scaling postulate advanced earlier by 
de Gennes and Fisher and displays features of conformal covariance. 

KEY WORDS: Density functionals; energy functionals; Ising model; scaling 
theory; criticality; surfaces; interfaces; microcanonical; one-dimensional. 

1. INTRODUCTION: MICROCANONICAL FUNCTIONALS 

One of the advantageous features of the Landau, phenomenological, or 
mean-field theory of critical phenomena is that the inhomogeneous order 
parameter profile m(r) induced by an arbitrary external field h(r) (where, 
for simplicity, we consider only an Ising-like, one-component order 
parameter) can be obtained by minimization of a simple local free energy 
functional, namely, 

O[{m}] =f dar {�89 IVml2-h(r)m(r)+�89188 -..} (1.1) 
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Here the last two terms represent the usual polynomial approximation for 
the free energy of a homogeneous system (the ellipsis denoting the 
higher-order terms which may be added if necessary), while e=~2/Z 
denotes the order-parameter "stiffness" with ~ the bulk correlation length 
and Z the susceptibility. Note that 12[{m}] is similar in form to the 
standard Landau-Ginzburg-Wilson Hamiltonian ~u~w[{S}], where s(r) 
is the fluctuating spin variable; we regard m(r)= (s ( r ) )  as the thermal 
average of s calculated with the Boltzmann factor exp(-flJguGw). The 
substitution of the spin variables by their averages yielding r 
~ a w [ { S  = m}] forms the essence of the mean-field (or, in diagrammatic 
language, tree) approximation3 t) 

A word about the concept "local" is in order. In practice, what one 
asks for is a functional which is given as a spatial integral over a finite 
number of locally defined fields or densities re(r) .... and a finite number of 
their simple (i.e., not fractional) derivatives Vm(r), VZm(r) ..... all evaluated 
at the same point. At the back of one's mind is a more detailed or 
microscopic functional expression which would involve multipoint integral 
kernels Xz(r,r'), cf3(r,r',r"), etc. of finite range in the sense that all 
moments with respect to ( r - r ' ) ,  (r-r"),. . .  exist or that the decay of the 
kernels as I r - r ' l ,  ]r-r"l,... increase is "rapid," i.e., exponential or faster. 
Then a truncated moment expansion, involving a finite number of 
derivatives, should reproduce all long-wavelength behavior correctly. Con- 
versely, if one allows indefinitely high derivatives or infinitely many den- 
sities, any f2[ {m} ] can be made local formally by introducing an infinite 
number of additional densities (entailing all spatial derivatives of m and 
their combinations, etc.). 

The simplicity of (1.1) has provided a basis for many advances in 
theory. Unfortunately, the basic approximation breaks down in the critical 
region below the upper critical dimension (d= 4, for the specific case of the 
spin systems under consideration), where the long-range correlations are 
usually believed to render the exact functional f2[ {m} ] nonlocal. 

More specifically, starting with a Hamiltonian ~[-{s}] ,  with the 
source term 

- f h(r) s(r) dr 

added, one obtains the free energy 

F = - k B T l n { I  ~s  exp[-]~o~({s})]} (1.2) 
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By definition this is a functional of the external field h(r), say, 
F = Y [ { h } ] .  Taking its functional derivatives generates the connected 
correlation functions of s, the first of which is just 

m(r) = ( s ( r ) )  = -6Y/6h(r)  (1.3) 

If now the relation (1.3) can be inverted to yield h ( r ) = J [ r ,  {rn}] as a 
functional of m, then the Legendre transform 

FE{m}]=fm(r)J[r, {m}] d r + ~ E { J ( r ,  {m})}] (1.4) 

can be constructed and one then has 

f2 = F -  ~ hm dr 
J (1.5) 

This is the procedure described in many field-theory and statistical 
mechanics textbooks, (1-4) where it is also proven that FE{m}] is the 
generating functional for the one-particle-irreducible (vertex) correlation 
functions. However, almost nothing is known about the general properties 
of the functional F at a critical point (or massless theory, in field-theoretic 
language) below the upper critical dimension. The e expansion for a profile 
m(r) involves, to first order in e = 4 -  d, calculation of the determinant of 
the Schr6dinger-type operator 

- cV 2 + 3um~(r) 

where mo(r ) is the solution minimizing the zeroth-order mean-field func- 
tional (1.1). All the advances along this line of which we are aware, both 
in the theory of instantons (2"3) and of surface critical behavior, (5) were 
achieved for particular problems in which the zeroth-order profile mo 
allowed for explicit solution of the corresponding Schr6dinger equation. 
These calculations prove to be strongly nonlocal in nature but give no 
direct information concerning the functional F [{m}]  itself. 

On the other hand, several local but approximate functionals of the 
form 

{rn}]=f  dr {~r rn(r)]+sll(~[t,m(r)]Vm)} (1.6) ~[t, 

have been proposed as generalizations of (1.1). (6'7)'2 Here ~ ( t ,  m) and 
~(t, m) are, respectively, the bulk thermodynamic potential density and the 

2 See also the earlier work by Fisk and Widom, ~8~ which employed a simpler approximation. 
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bulk correlation length for the given reduced temperature t=  ( T - T c ) / T ,  
and homogeneous magnetization m; both these functions may be regarded 
as known from the theory of the bulk critical phenomena. Beyond that, the 
function ~1, which vanishes with Vm, is constructed so as to satisfy as 
many known constraints as feasible. (6'7) This approach appears to be sur- 
prisingly effective for a number of problems concerning finite systems at 
criticality, near-critical adsorption, etc., (7) despite the fact that the form 
(1.6) is presumably not the correct generating functional for the vertex 
functions. There are also certain fairly subtle physical aspects for which a 
functional of the form (1.6) has been shown to embody flaws (7'9) (see also 
comments in ref. 10). 

However, a more profound shortcoming of any local free energy func- 
tional O(t, {m}) utilising only the order-parameter profile m(r) becomes 
apparent when one attempts to use it to calculate the wall free energy of 
a near-critical system above To, or to investigate the associated local per- 
turbations to the bulk caused by a wall or interface, in the special but 
significant symmetric case in which the boundary conditions at the wall or 
interface do not break the (precise) order-parameter symmetry of the bulk 
(see, e.g., ref. 11). Important practical examples are provided by interfaces 
and walls in liquid helium-four near the transition to superfluidity (11'12) and 
by grain boundaries and surfaces in ferromagnetic materials in zero field or 
simple antiferromagnets in uniform fields. 

More concretely, consider a semi-infinite system at an ordinary 
Ising-like bulk critical point (5~ with a surface or wall that does not break 
the magnetic symmetry either explicitly, by imposition of a surface 
magnetic field, or by sufficiently strong surface enhancement of the surface 
ordering interactions. In this case the magnetization profile of the system 
above and at Tc is everywhere identically zero; thus the only contribution 
to a local f2 can come directly from the surface or wall itself. On the other 
hand, since the wall must in general change the exchange interactions 
locally (for example, by changing the number of neighbors for the surface 
spins), one expects a local energy density perturbation 

e(r) oc ( s 2 ( r ) ) -  (s2(oe))c tl.7) 

which will decay with the normal distance z from the wall or interface 
a s  (4,6,13) 

e(r) ~ 1/z ~ with co~ = (1 - c~)/v (1.8) 

Clearly such a long-range tail in the local energy density cannot be under- 
stood on the basis of a local f2[{m}]. Furthermore, it is associated with 
a corresponding slow decay which leads to a singular, critical contribution 
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to the surface free energy (11) above Tc which cannot be obtained correctly 
from any local order-parameter functional like s {m } ]. 

To overcome this difficulty and provide a basis for practical computa- 
tions for the symmetric case, we propose to investigate the conjugate, 
"microcanonical" thermodynamic potential Y[{m},  {e}], defined as a 
functional of both the local magnetization and the local energy density. 
Such an approach is rather natural from the viewpoint of general scaling 
theory. (4'13)'3 Thus, one of the major defects of mean-field theory or 
Landau theory is the failure to predict truly singular critical behavior for 
the specific heat: the behavior of the energy is totally driven by the varia- 
tion of the magnetization. This is, of course, built into (1.1). On the other 
hand, the nontrivial specific heat exponent seen in real systems and found 
in exactly solved models is represented in scaling theory and renormaliza- 
tion group analysis via the existence of two independent relevant critical 
operators (or densities) at a standard critical point, namely, the order 
parameter m and the energy e. These are characterized by distinct scaling 
dimensions com<~o~<d or positive renormalization group eigenvalue 
exponents 2 m = d -  Cnm > 2~ = d -  co s. Accordingly, to obtain a complete, 
leading-order local description of critical behavior in nonhomogeneous 
situations, it seems appropriate to consider both relevant densities m(r) 
and e(r), on an essentially similar footing. 

Of course, once this idea is accepted, a crucial issue is whether these 
two densities are sufficient to render the corresponding microcanonical 
functional 5:[{m}, {~}] local. More modestly, one may hope that a 
significantly improved level of description, even if still only approximate, 
can be attained via suitable local functionals of m and e together. 

A few comments regarding terminology may be useful. If one deals 
with a particle system in a finite domain A, the terms grand canonical (gr), 
canonical (can.), and microcanonical (mic) for the corresponding statistical 
mechanical ensembles have well-established definite meanings, namely, 
the control variables are, respectively: g r - (T , /~ ) ,  can. -- ( T, N), and 

The need to go beyond a single order-parameter theory in discussing symmetric critical 
endpoints, as observed notably in superfluid helium (see, e.g., ref. 7), has been recognized 
independently by, in particular, Tavan and Widom. ~ Such a possibility is also especially 
clear in the phenomenological analysis of any multicomponent fluid system: Note the discus- 
sions in refs. 14 and 15. However, the essential point here, which we believe is novel, is 
the aim to treat the local energy and its fluctuations as distinct from the standard 
"symmetry-breaking" magnetic or compositional order parameters, which, even in sym- 
metric cases, display a discontinuity below the critical point. (Recall that in a simple 
Ising-like or similar symmetric critical situation, the thermodynamic energy is continuous 
across the first-order transition boundary, as are the specific heat and all energy-energy 
correlation functions, etc.) Furthermore, independent, nondriven critical behavior for eft) 
should be represented in the formalism or arise transparently in the analysis. 
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m i c -  (U, N). Of course, the corresponding overall thermodynamic poten- 
tials are Vp(T, #), Ftot(T, N), and Stot(U, N). Nevertheless, if one contem- 
plates a magnetic system (such as an Ising model), the terminology is not 
so well established: however, the lattice gas-Ising ferromagnet analogy 
indicates that the natural correspondence is gr -= (T, H), can. - (T, M), and 
m i c - ( U , M ) .  As regards potentials, the notation F(T,H) is standard; 
A(T, M) has been proposed (originally by R.B. Griffiths); S(U, M) is 
reasonable by analogy. In the more general situation where one envisages 
some general local order parameter ~(r), it is natural to identify ~ with M 
in the magnetic situation. Finally, recall that in the thermodynamic limit 
V(A)~ ~,  suitably taken, all ensembles describe precisely the same 
physics. 

Now the standard classical or Landau-type phenomenological theory 
for critical behavior, in which one expands in powers of ~ and (T-T~) ,  
then addresses the thermodynamic potential A(T, 7.') which, if h is the con- 
jugate ordering field, satisfies F(T, h)=-min~,[A(T, ~U)-h~] .  While one 
leaves aside the question of calculating A(T, ~) or F(T, h) from statistical 
mechanics, for which the natural two ensembles would, by extension, be 
called canonical and grand canonical, the issue is only one of ther- 
modynamic assemblies: both would be called isothermal, since T is a con- 
trolled parameter, but, beyond that, there is no generally accepted ter- 
minology; iso-ordering and isochamp, respectively, are possible but we do 
not especially advocate these terms. More natural, we feel, is to extend the 
statistical mechanical usage so that: ( i)a thermodynamic description or a 
calculation in which T and h are controlled is described as grand canonical 
and, likewise, if slowly varying T(r) and h(r) are specified; (ii) if T and ~, 
or T(r) and ~(r), are held fixed, as canonical; and (iii) if U and ~u, or ~(r) 
and ~(r), are controlled, as microcanonical. In a thermodynamic functional 
formulation, then, we refer to d [ T ;  7t(r)] ( - F [ { ~ } ] )  as a canonical 
functional; one functional minimization is required to compute the 
thermodynamic potential F(T, h). By the same token, we call the entropy 
functional 5~[~(r), ~U(r)] a microcanonical functional; a double functional 
minimization is required to compute F(T, h), which, in all cases, we regard 
as the most basic thermodynamic potential. 

In the slowly varying thermodynamic limit the various potentials and 
functionals will be well defined and related to one another via Legendre 
transformations. Of course, if these Legendre transformations are 
implemented in a finite system, the various results will not agree precisely. 
Thus, for example, one may compute the "microcanonical functional" 
5~[-e, ~ ]  grand canonically (as we will do) or canonically. For V(A)< oo 
the exact results will differ; but these differences, which do not interest us 
here, will vanish in the thermodynamic limit. 
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Now it is, of course, appropriate to check the proposed microcanoni- 
cal approach first at the phenomenological or mean-field level. This is 
readily done. (16)'4 Thus in the simplest symmetric situation the postulate 
(1.1) is replaced by 

;7 [{m},  {e } ] = f d% { ~em IVml2+�89 IVel2 + �89 " Ve 

- kin(r) - re(r) 

+e2oe2(r)+e12e(r)m2(r)+eo4m4(r)+ . . .} (1.9) 

with the obvious generalizations for nonsymmetric cases. Of  course, Cm, e~, 
and Cm~ all remain finite through the critical region. One thence obtains a 
fully classical description of the critical point (or of a critical 
endpoint(7, u, 12)) with the standard critical exponents fl = 1/2, 7 = 1, v = 1/2, 
etc. The only new feature is that energy profiles and energy-energy correla- 
tion functions can now be computed. However, even at the critical point, 
the energy profile and correlations decay exponentially; all long-distance, 
singular behavior is still controlled by the order parameter  and its fluctua- 
tions in the usual classical way. 

Thus, rather little of real interest arises at the classical or mean-field 
level. Various other lines of investigation, such as field-theoretic renor- 
malization group analysis, are, however, quite open and are being pur- 
sued. (16) In this paper we test the approach by analyzing a continuum one- 
dimensional model equivalent to the linear ferromagnetic nearest-neighbor 
Ising model in the vicinity of its critical point at T = 0 ,  h = 0 .  (17) We are 
able to calculate explicitly the microcanonical functional ;7 [  {m }, {e } ] and 
find that, indeed, it is completely local! It must be noted, however, that an 
elegant, explicitly local exact expression for the entropy functional of the 
discrete, one-dimensional nearest-neighbor Ising model has recently been 
obtained by Percus. (18)'5 Nevertheless the discrete form of ;T does not 
exhibit the important  universal features, specifically scale invariance and 
(asymptotic) conformal covariance, that we uncover. In our calculation we 
implement the required Legendre transformations directly on the original 

4 See also footnote 3 above. 
5 See also the references therein. The calculations undertaken by Percus were motivated by his 

program to construct the entropy for particle systems as a functional of the one-point and 
two-point correlation functions, the latter being thermodynamically conjugate to the 
two-point or particle-particle interaction potential. In general, this choice of second density 
and conjugate thermodynamic field is quite distinct from what we are proposing, in terms 
of a local energy density. However, in the case of the nearest-neighbor Ising model the pair- 
interaction potential reduces to a local scalar and the two definitions of entropy functional 
coincide. 
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continuum model, reducing it, in the process, to a two-level quantum 
mechanical system in continuous imaginary time. In the end, of course, we 
check that our results may be obtained from Percus' expression by taking 
an appropriate continuum limit. 

Beyond its scaling character our functional assumes the postulated 
form (6'7) (1.6), but with t replaced by ~(r). In other words, gradient terms 
involving Ve do not contribute to 5 ~. This result, which is somewhat sur- 
prising, is certainly special to the one-dimensional case d =  1. However, it 
could be a hint that the way in which local gradients of e(r) enter 5 P for 
4 > d >  1 (supposing that they do) may be significantly more complex than 
the customary gradient expansions tend to suggest. In any event, we hope 
that this explicit calculation for a simple linear system will clarify the 
little-explored nature of the critical thermodynamic potential of an 
inhomogeneous system. Such exact studies have, for one-dimensional 
systems, previously been enlightening in uncovering the operations of 
renormalization groups, (17) in the density functional theory of fluids, ~ 19) 
and in the theory of critical interfaces. (2~ 

2. T H E  O N E - D I M E N S I O N A L  M O D E L  

The procedure of calculating 5P[{m}, {e}] which we use here is a 
straightforward generalization of the definition of F [{m}]  given in the 
Introduction; see (1.4). However, we will now need to supplement the 
Hamiltonian with two external or source terms, namely, 

+ �89 f dr t(r) s2(r) 

which embodies an arbitrary position-dependent "temperature deviation" 
t(r) and 

- f dr h(r) s(r) 

as discussed previously. The resulting "grand canonical" free energy or 
thermodynamic potential o~[{h}, {t}] will be subject to a double 
Legendre transform with respect to both h and t, to yield the desired 
"microcanonical" functional 5 e [ {m }, {~ } ]. 

Specifically, we consider a long linear chain of sites j = 1 ..... N with a 
discrete Ising variable s j =  +1 located at each site j. Each spin interacts 
with a local external field hj and also with its nearest neighbors, so that a 
pair of antiparallel neighbors with sjsj+l < 0  increases the energy by tk, 
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where k = (j, j + 1 ) labels the bonds of the spin chain. The Hamiltonian of 
the model is thus 

. ~ =  - ~  hjsj+ �89 ~ t~(1 - sjsj+,) (2.1) 
j k=--(j , j+l)  

where, in more standard notation, the t k=2J  k are all positive. For 
convenience, the thermal energy k B T will be used to scale all the energies 
in the calculation, so the free energy is just 

Y [ { h } , { t } ] = - l n (  ~+ e x p [ - J f ] )  (2.2) 
{s~ _l} 

The mean energy density defined in this way, namely, 

ek = O~/Ote = �89 - (sja).+,)) (2.3) 

has the clear meaning of the density of "broken bonds" or "domain walls." 
The problem of calculating the free energy in (2.2) is readily 

reexpressed using the transfer matrices 

F = - l n Z = - l n T r ( ~  TiTIj j+ D) (2.5) 
\ j= l  

where we have introduced the local fugacity of a domain wall via 

ck = exp( - tk) = exp( --2Jk/k B T) (2.6) 

The critical point of the model is at To=0  and zero field, ~17'2~ so that the 
approach to overall criticality is described by hj ~ 0 and tk--* ~ or ~ ~ 0. 
To obtain the desired continuum limit, we must restrict the fields hj and ~ 
so that the important lengths arising thermodynamically are much greater 
than the lattice spacing a. That means that each factor in the matrix 
product in (2.5) should differ little from the unit matrix, so that significant 
changes in the state vector accumulate only over large distances. Physi- 
cally, one may think of an Ising chain at any h > 0 and t as a gas of clusters 
(or domains) of magnetization of opposite sign to h. When h increases, the 
size of such a cluster decreases like l/h, while generally the distance 
between two neighboring clusters is of order 1/r Since both these distances 
must greatly exceed a, we suppose the fields hj and ~k (which are otherwise 
arbitrary) satisfy 

[hj+l - hi[ .~ ]hj[ ,~ 1, 0 < ~ ,~ 1 (2.7) 
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that is, they are small in absolute value and vary slowly on the scale of the 
lattice spacing, which we set to unity below. (Of course, the positivity of 
follows from its definition above.) 

Under these conditions we go over to a continuum description. We 
define the matrix 

Tk=(j,j+l)m~j akXj+l " ~ = T  ~k --hk (2.8) 

where hk=�89 and we have neglected terms of order Ih j+ l -h j l  
and h~ in the expansion about the unit matrix I. On introducing the matrix 
product 

Z(x)= 1-I Tk (2.9) 
k < x  

we may use (2.7), which implies Z(x + 1 ) -  Z(x)~ Z(x), and then consider 
x = n as a continuous variable. Thence we obtain 

dz(x)=~h(x) ;(X)qz(x)=[~(x)al+h(x)a3]Z(x) (2.10) 
dx L~(x) - h ( x ) J  

where the ai are the standard Pauli matrices. For an initial condition it is 
adequate to take Z(0 )=  I. 

The relations (2.5) and (2.10), with Z = T r { Z ( N ) }  define the model. 
The idea of writing a differential equation for the incomplete partition sum 
matrix Z(x) was inspired by the work of Percus, ~19) who considered classi- 
cal hard-core particles on a line in an arbitrary external potential. 
Evidently (2.10) can be regarded as a Schr6dinger equation in imaginary 
time x for a two-state quantum mechanical system in a time-dependent 
external field and with a time-varying tunneling probability. 

3. C A L C U L A T I O N  OF T H E  FREE E N E R G Y  

The representation of the "equation of motion" (2.10) via the Pauli 
matrices reveals a notable symmetry between the field h and the fugacity 
(which, indeed, is also a known feature of the discrete model). Another 
representation of (2.10), making this symmetry even more transparent, is 
obtained by mapping the columns of the matrix Z(x)=-[Zij(x)] 
(i, j = 1, 2) onto two complex numbers via the definitions 

zl(x)=Z,l(x)+iZ21(x) with l = 1 , 2  (3.1) 
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so that 

Then we have 
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zl(0 ) = 1, z2(0 ) = i (3.2) 

dz,/dx = #(x)  z[' ( I= 1, 2) (3.3) 

where the varying magnetic and thermal fields are embodied in the local 
external potential 

/t(x) = h(x) + i~(x) (3.4) 

while the asterisk denotes complex conjugation. By introducing polar 
coordinates in the complex plane through 

#(x)  = p(x)  e i~~ z t (x)  = rt(x) e i~ (3.5) 

we may rewrite (3.3) as the pair of equations 

1 dr~ 
~ x  = p cos(q~ - 20l), rt(0) = 1 (3.6) 

dot 
~ x  = p sin(o - 2 0 , )  ( /=  1, 2) (3.7) 

Note that by the definitions (3.4) and (3.5) and the positivity of if, the angle 
of ~p is strictly bounded by 

0<~o<Tr (3.8) 

while 01(0)= 0 and 02(0)= �89 
It is now easily seen that (3.7) describes the relaxation of 01 and 02 

toward the value 1 ~q~, the variation of both being strictly bounded by 

0 < 0 / < i n  for all x > 0  (3.9) 

For a homogeneous system, with ~o(x) and p(x)  constant, both 0z 
relax toward �89 at a rate corresponding to a spatial correlation length 
given (in units of the lattice spacing a) by 

= p - -  1 = (h 2 + f2)-i/2 (3.10) 

while d(ln rt)/dx attains the maximal value 

P = Po - ( h2 + fie)1/2 (3. l 1 ) 

822/66/5-6-4 
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Consequently we find r~(x)~ exp(poX ) and thus we have 

-F=poL+O(1 ) as L=-Na~oo (3.12) 

Of course, this expression for the free energy is equivalent to the 
well-known result. ~17~ It can be checked easily by noting that (h2+ ~2)1/2 is 
the largest eigenvalue of T, as defined in (2.8), tn this uniform limit. Note 
also that the conditions (2.7) imply that the correlation length satisfies 

>> 1, as anticipated. 
When ~o(x) varies, however, the O~(x) are not able to follow �89 

exactly. Thus, the right-hand side of (3.6) falls below p(x) and one has 

It follows that the free energy, which is given by 

F=-lnlexp{frp(x)cos[~o(x)-2Ol(x)]dx}cosO,(L) 

+ exp{f~p(x)cos[~o(x)-202(x)]dx}sinO2(L)] (3.14) 

[see (2.5), (3.1), (3.5), (3.6)] is larger than the natural local approxima- 
tion, namely 

f ,  L 

F~~ - J o  p(x) dx (3.15) 

We can obtain further insight by linearizing (3.7), which, we will show, 
is justified when d~o/dx ~ p(x). The linearized equation is readily solved to 
yield 

0l(x)=O,(O)exp l - 2  ;oP(y) dy ] 

+ dy p(y) q~(y) exp - 2  O(Y') dy' (3.16) 

The main conclusion to be drawn is that if 

fo :p(y) oo x ~ (3.17) dy w h e n  

i.e., the integral of p(x) grows without bound as x increases, then the 
dependence on the initial conditions is eventually lost. [Note that p(x) is 
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strictly positive.] For sufficiently large x, one thus has 01(x)= 02(x)=-O(x) 
and (3.14) immediately yields 

- F =  dx p(x) cos[q)(x) - 20(x)] + O(1) (3.18) 

Now the expansion in dcp/dx, embodied in the linearized form (3.16) 
to leading order, can be formally carried to any order. This is most 
conveniently done by putting 20t(x) = (p(x) - 0l(x), so that from (3.7) one 
has, as the equation of motion for 0t(x), 

dO, ~ 1 3 d~o (3.19) 
dx + 2p sin O, = + 2pO,- -~ PO, + . . . .  -~x 

When d~o/dx is small, the angles 0t will also be small, so that the nonlinear 
terms on the left-hand side of (3.19) may be treated perturbatively. By 
induction we find that to any fixed order the result has a form similar to 
(3.16), namely, 

O,(x)=O,[O,(O), {(p},x]exp - 2  p(y)dy +O0({~o},x ) (3.20) 

where Oo does not depend on the initial conditions, while the part carrying 
that information carries an explicit exponential extinction factor. Since the 
variation of O i is bounded via (3.9), the results (3.17) and (3.20) formally 
imply the convergence 01(x), 02(x)-~ Oo(X) as x increases. That, in turn, 
justifies (3.18). 

It is plausible that the expansion underlying (3.20) normally has a 
nonzero radius of convergence: in other words, if for all x the ratio 
Id~o/dxl/p is bounded by a suitable constant of order unity, then (3.20) is 
fully valid. Since the variation of 20 excludes the endpoints 0 and rc [see 
(3.9)], it is even plausible that the relaxational dynamics of (3.7) always 
ensures the convergence of 01 and 02 to O(x) on some bounded length scale 
determined by the growth of the integral in (3.17). 

Being unable to make more definitive statements at present, we will 
limit our considerations to the "smooth" or "steady" regime, in which 01 
and 02 do indeed converge on a finite scale to a definite O(x), so that (3.18) 
is valid. Physically this means that the influence of the boundary conditions 
is limited to the appearance of surface terms of order unity in the total 
free energy. One might also, for example, suppose that a sufficiently thick 
slab of a homogeneous phase, with some q)= const, is placed at the origin, 
so providing effectively for relaxation to 01 = 0 2 = l q )  before the inhomo- 
geneous region is reached. We also expect that unsteady or fluctuating 
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regimes, if present, will be revealed as solutions of the final Euler-Lagrange 
equations (see Section 4 below) of a similar character. 

Consequently, (3.7) and (3.18) constitute the main result of this sec- 
tion: to obtain the total free energy F ~ [ { h } ,  {t}] up to corrections of 
order unity, one has to solve (3.7) for O(x) with any initial condition and 
then substitute in (3.18). We will show in the next section that this proce- 
dure is at least self-consistent, yielding an unambiguous local expression for 
5g[{m}, {e}]. 

We close this section with two comments: 

(a) The argument O(x) of the cosine in (3.18), as determined by (3.7) 
or (3.19), depends on all values of q)(x')=cot-l(h/#) in the interval 
x - p - l <  x'< x [as seen by comparison with (3.16) and (3.10)]. When p 
becomes small, the free energy o~ [ {h }, { t} ] thus becomes highly nonlocal, 
as was to be anticipated in view of (3.10). 

(b) However, the effects of nonlocality are induced by variation of 
q~(x) only. If h and t conspire so as to keep the ratio h/# constant, the free 
energy is precisely given by the local approximation (3.15). Noting that 
-SFloo/6h(x)=m(x)=eos (p(x), we see that q)=const is equivalent to 
m=cons t .  Consequently, we learn that 5P[{m}, {~}] cannot contain 
additive terms depending solely on &/dx, the gradient of the energy 
density. We will confirm this explicitly in the next section. 

4. T H E  M I C R O C A N O N I C A L  T H E R M O D Y N A M I C  P O T E N T I A L  

In order to perform the double Legendre transform from the magnetic 
and thermal fields 

h(x) = p(x) cos (p(x) (4.1) 

t(x) = - l n [ p ( x ) ]  - l n [ s i n  q~(x)] (4.2) 

to the corresponding conjugate magnetization m(x) and (domain wall) 
energy e(x) densities, we use (3.18) and the covariant representation 

5~[{m}, {e}] = max f dx Imp cos cp + e In p + ~ In sin q) - p cos(Z0 - ~o)] 
P , O  

(4.3) 

where O(x) satisfies (3.7); this latter equation of motion allows one to make 
the replacement 

q~(x) = 20(x) + sin - 1 [p - ~(dO/dx)] (4.4) 
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The remaining calculation just entails solving the variational equations 
for (4.3) as a functional of p(x), O(x), and (dO/dx). The main stages of 
an elementary but somewhat involved calculation are outlined in the 
Appendix. As regards principles, the derivation relies strongly on discarding 
the surface terms resulting after integration by parts: according to the 
discussion at the end of the previous section, we believe that these terms 
will contribute to the free energy of the boundaries, which is beyond the 
scope of the present analysis. 

The result is found to be 

+ �89 l+sz )Jn  1+5  ) 

28 dx j ln (1 28 dx J l J  (4.5) 

The "equations of motion," obtained by variation of 

~. = 5P + f (te -hm)  dx (4.6) 

take the form 

6e(x----~=�89 82 4 \ d x  j j - � 8 9  (4.7) 

am(x) dx 6(dm/dx) = l - - m  2 2 d x tanh -1 h(x) (4.8) \2e axJ3 

Various points may now be made. First, consider the exact result of 
Percus for the discrete Ising model or lattice gas, namely, Eq. (2.12) of 
ref. 18. After expressing the lattice-gas one- and two-particle densities used 
in ref. 18 in terms of our magnetic variables via nx = �89 - mx) and 

=lEl+�89 ~ 1)-~ ~,~+lJ nx ,  x + 1 

and making the standard change to continuum notation via 

din 
re(x)= 1 _ _ =  mx+l _mx 2(mx+mx+l)' dx 
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we can write Percus' expression as 

5~=; dx {elnE- �89 2] 

1 - m  (1 1 1+  + - - ~ - - l n  ~-m) l+ml (1 e + - - ~ - -  n m) 

I( 1 dm'~ ( 1 dm'~ 
+ �89 l + ~ - ~ x ) l n  l + ~ x )  

+ ( 1  1 drn) (1 1 dm)]~ 
2~ ~xxJ In 2e dxJJJ (4.9) 

Note that the terms independent of dm/dx simply represent the exact 
entropy expression for a uniform Ising chain. Now the full expression 
reduces to (4.5) under the condition 

e ~ 1 - Iml (4.10) 

which, following the discussion preceding (2.7), means physically that the 
typical size of a domain fluctuation is much larger than the lattice spacing. 
Indeed, (4.10) is equivalent to our original restriction h ~ 1 in (2.7), since 
1 - [m] is of order e/h when e ~ [hi ~ 1. 

Note, second, that the advantage of accepting the restriction (4.10) is 
that the entropy functional becomes conformally covariant. The conformal 
group in one dimension consists of all diffeomorphisms x --, x'. Conformal 
invariance of the critical state (21) means that any correlation function of the 
densities ~%(x) remains invariant under any conformal transformation if 
the densities are simultaneously rescaled according to 

(dx,) 
~oj(x)~\dxj (pj(x') (4.11) 

where coj is the scaling dimension of q~j [-see e.g., (1.8)]. Recalling the 
relation between 5P[{m}, {e}] and F[{h},  {t}], the latter being the 
generating functional for the correlation functions in question, Ca'16) we may 
formulate the principle of conformal covariance of the entropy functional 
as follows: the functional ~ in (4.6), taken at the critical point values of the 
fields t and h (h = 0  and t =  +o0 in our case), must be invariant under any 
conformal transformation 

x = f(x') (4.12) 
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provided the densities m and e are transformed according to (4.11) while 
the fields are rescaled locally via 

h ~ (dx'/dx) a . . . .  h(x'), t --* (dx'/dx) u-~ t(x') (4.13) 

It is easily seen that the form (4.5) is indeed conformally covariant if 
~Om=0 and o)~= 1: all elements of length dx enter (4.5) only in combina- 
tion with e(x), so that the factors dx'/dx compensate each other. The term 

dx' e(x') ln(dx'/dx), generated by rescaling o f  the energy density in the 
argument of the logarithm, contributes to the source term ~ dx' t(x') e(x') 
and does not change its critical point value t =  +oc. The well-known ~ 
values of the scaling dimensions (/)m = 0 ,  (-D e = 1 can be easily verified 
by noting that the decay of the spin-spin correlation function in d =  1 
is always purely exponential (implying t /= 1), and that v=  1/2~= 
1 / ( d -  c%) = oe. 

Third, most striking in the light of the discussion in the Introduction, 
is the fact that the microcanonical functional (4.5) is entirely local. Further- 
more, it depends only on the first derivative of the local magnetization. 
Note, however, that Percus (18) has also managed to obtain a local, 
although rather complicated, expression for the canonical functional 
d [ { m } ,  {t}] for the d =  1 Ising chain. Indeed, rearrangement of (4.7) 
expresses e(x) in terms of t(x), m(x), and (dm/dx); substitution in (4.5) 
then confirms canonical locality in the continuum limit. 

The absence of any (&/dx) 2 terms and of other gradients of the 
density e(x) agrees with the physical picture that in the absence of a 
mean overall magnetization the system is essentially just an ideal gas of 
noninteracting domain walls: clearly this is special to linear Ising-like 
models. 

It is also interesting that the microcanonical functional embodies a 
basic feature of the Fisher~le Gennes (6'7) canonical form (1.5), namely that 
the gradient of the magnetization density is always scaled by the local 
correlation length, which is seen to be simply e-l(x) ,  Nevertheless, such a 
form could well break down in higher dimensions. (Recall, for comparison, 
van der Waals' excluded-volume approximation, which is exact in d =  1, 
but no longer fully correct in higher dimensions, although qualitatively 
valid.) 

There are singularities in (4.5) as a function of e that are all quite 
physical. That at e = 0 corresponds to the suppression of all thermal excita- 
tions at ]m[ = 1 (complete saturation); those at 2e = Idm/dx[ reflect the fact 
that a jump of magnetization from +1 to - 1  (or vice versa) can be 
achieved only at a domain wall. In both of these limits the continuum 
model becomes a less faithful representation the original Ising chain. 
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In conclusion, the conformally covariant microcanonical functional for 
a one-dimensional Ising-like system can be evaluated exactly in the vicinity 
of the zero-temperature, zero-field critical point; the functional is local and 
has an appealing scaled form. (6'7) Approximations for more general situa- 
tions might profitably embody these features; but, even if they do not, the 
formulations should, ideally, reproduce the present results in the limit 
d = l .  

APPENDIX. DERIVATION OF THE MICROCANONICAL 
FUNCTIONAL 

In order to derive 5P({m}, {e}) from ~-({h}, {t}) as given by (4.3) 
with (4.4), we may start by substituting for p(x) and O(x) via 

U(X) ----= [-p2(X) - -  (dO/dx)2] 1/2, W(X) = sin 20(x) (A1) 

For brevity we will denote (d/dx) by an overdot. Then the integrand in 
(4.3) may be written 

=L~a(u, w, v~)= (1 -w2) 1/2 (mu-�89 �89 (A2) 

where one integration by parts has been performed in (4.3) to obtain 
the t e r m  r h ( 1 - w 2 )  1/2. The first Euler-Lagrange equation is simply 
(O=~/~u) = 0, which yields 

e/(uw + �89 = 1 - m ( 1  - w2)  1/2 (A3) 

The second one, derived using an integration by parts in the standard way, 
is (3Sf/Ow)= (0~/~1b)'. Upon repeated substitution of (A3) this eventually 
reduces to 

rh w m~ e 
2w(1 - w 2 )  1/2 (t - -  W2) 1/2 1 - m(1 -- w2) 1/2 + - w = 0 (A4) 

Note that all terms involving ff have cancelled, so providing a local 
expression for w in terms of m, rh, and e, namely 

w = (1 - mZ) 1/2 [1 - (rh/2e) 2 ] 1/2111 - (rnrh/2e)l (AS) 

while (A3) then yields 

u = ( e -  �89 - m = ) -  �89 (A6) 

Now note that in substituting for u and w in (A2), the last term in 
(A6) cancels in the argument of the logarithm. The same ~v/w term in u 
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may be discarded in the last term in (A2) as a perfect derivative, while in 
the first term it may be grouped with -rh(1 -w2)  1/2 to yield 

rn~ _ ~__d [m(l -- w2) 1/2] 
2w(1-w2)  1/2 ~ dx 

where /51(x ) denotes a perfect derivative. Now, considering a further 
integration by parts, this can be rewritten as 

( w ) 
l rhln  l + ( 1 - - w 2 ) m  +/)2(x)  

-- �88 In ~ + ~rn -- (rh/2e)] 

where D;(x) is a further perfect derivative and (A5) has been used to 
eliminate w. The first term on the right-hand side here is also a perfect 
derivative, since 

r h f ( m ) = d  f f (m)dm (A9) 

and so may likewise be discarded. The remaining parts of (A5) and 
(A6) may be substituted into (A2) straightforwardly. On recalling that 
rh=dm/dx, this finally reproduces the form of the microcanonical 
functional as recorded in (4.5). 
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